ISIMIP2a Simulation Data from the Global Water Sector

Cite as

Simon N. Gosling, Hannes Müller Schmied, Richard Betts, Jinfeng Chang, He Chen, Philippe Ciais, Rutger Dankers, Petra Döll, Stephanie Eisner, Martina Flörke, Dieter Gerten, Manolis Grillakis, Stefan Hagemann, Naota Hanasaki, Maoyi Huang, Zhongwei Huang, Sonia Jerez, Hyungjun Kim, Aristeidis Koutroulis, Guoyong Leng, Junguo Liu, Xingcai Liu, Ganquan Mao, Yoshimitsu Masaki, Juan Pedro Montavez, Catherine Morfopoulos, Taikan Oki, Rene Orth, Sebastian Ostberg, Lamprini Papadimitriou, Yadu Pokhrel, Felix Portmann, Wei Qi, Yusuke Satoh, Sonia Seneviratne, Philipp S. Sommer, Tobias Stacke, Qiuhong Tang, Ioannis Tsanis, Yoshihide Wada, Xiaoyan Wang, Tian Zhou, Matthias Büchner, Jacob Schewe, Fang Zhao (2023): ISIMIP2a Simulation Data from the Global Water Sector (v2.0). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.882536

Metadata

DOI:
https://doi.org/10.48364/ISIMIP.882536
Title:
ISIMIP2a Simulation Data from the Global Water Sector
Version:
2.0
Creators:
Contact person:

For inquiries concerning this dataset, please contact info@isimip.org.

Abstract:

This dataset contains ISIMIP2a (https://www.isimip.org, Schewe et al. 2019) simulation data from 16 global water models: CLM4.0 (Leng et al. 2015, Oleson et al. 2010), DBH (Tang et al. 2007, Tabng et al. 2011), H08 (Hanasaki et al. 2008, Hanasaki et al. 2008), JULES-B1 (Clark et al. 2011, Best et al. 2011, Harper et al. 2016), JULES-W1 (Best et al. 2011), LPJmL (Sitch et al. 2003, Schaphoff et al. 2013, Rost et al. 2008), MATSIRO (Pokhrel et al. 2014, Takata et al. 2003, Pokhrel et al. 2011), MPI-HM (Stacke et al. 2012), ORCHIDEE (Traore et al. 2014, Guimberteau et al. 2014), PCR-GLOBW (Sutanudjaja et al. 2018), SWBM (Orth & Seneviratne 2015), VIC (Liang et al. 1994, Haddeland et al. 2006, Zhou et al. 2016), WAYS (Mao et al. 2019), WaterGAP2-2ISIMIP2a (Müller Schmied et al. 2016, Müller Schmied et al. 2014, http://watergap.de), WaterGAP2-2c (Müller Schmied et al. 2015, Müller Schmied et al. 2014, Müller Schmied et al. 2017), and WEB-DHM-SG (Qi et al. 2020, Shrestha et al. 2010, Wang et al. 2009).

With version 2.0 of this dataset, model output for WAYS, WaterGAP2-2c, and WEB-DHM-SG was added and the DOI page moved to the new ISIMIP repository.

Methods:

The ISIMIP2a global water outputs are based on simulations from global water models according to the ISIMIP2a protocol (https://www.isimip.org/protocol/2a/). A more detailed description of the models and model-specific amendments of the protocol are available at https://www.isimip.org/impactmodels.

Publication date:
May 24, 2023
Publisher:
ISIMIP Repository
Contributors:

Here we list the persons and organizations, who are responsible for the collection, the management, and the publication of this dataset.

Rights

The datasets for this DOI are published under different usage rights (please check the license statement for each dataset):
When using ISIMIP data for your research, please appropriately credit the data providers, e.g. either by citing the DOI for the dataset, or by appropriate acknowledgment. We strongly encourage to offer co-authorship to at least a representative of the data providers. Further information can be found in our terms of use.

Export

Download

API

References

  • Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C, Edwards J, Hendry M, Porson A, Gedney N, Mercado L, Sitch S, Blyth E, Boucher O, Cox P, Grimmond C, Harding R et al. The Joint UK Land Environment Simulator (JULES), Model description – Part 1: Energy and water fluxes. Geoscientific Model Development Discussions, 4, 595-640, 2011. https://doi.org/10.5194/gmdd-4-595-2011
  • Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C, Edwards J, Hendry M, Porson A, Gedney N, Mercado L, Sitch S, Blyth E, Boucher O, Cox P, Grimmond C, Harding R et al. The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677-699, 2011. https://doi.org/10.5194/gmd-4-677-2011
  • Clark D, Mercado L, Sitch S, Jones C, Gedney N, Best M, Pryor M, Rooney G, Essery R, Blyth E, Boucher O, Harding R, Huntingford C, Cox P et al. et al. The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4, 701-722, 2011. https://doi.org/10.5194/gmd-4-701-2011
  • Guimberteau M, Ducharne A, Ciais P, Boisier J, Peng S, De Weirdt M, Verbeeck H et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geoscientific Model Development, 7, 1115-1136, 2014. https://doi.org/10.5194/gmd-7-1115-2014
  • Haddeland, I., Skaugen, T., and Lettenmaier, D. P. (2006), Anthropogenic impacts on continental surface water fluxes, Geophys. Res. Lett., 33, L08406. https://doi.org/10.1029/2006gl026047
  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K et al. An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 1007-1025, 2008. https://doi.org/10.5194/hess-12-1007-2008
  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K et al. An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrol. Earth Syst. Sci., 12, 1027-1037, 2008. https://doi.org/10.5194/hess-12-1027-2008
  • Harper A, Cox P, Friedlingstein P, Wiltshire A, Jones C, Sitch S, Mercado L, Groenendijk M, Robertson E, Kattge J, Bönisch G, Atkin O, Bahn M, Cornelissen J, Niinemets Ü, Onipchenko V, Peñuelas J, Poorter L, Reich P, Soudzilovskaia N, van Bodegom P et al. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development Discussions, 1-64, 2016. https://doi.org/10.5194/gmd-2016-22
  • Leng, G., Huang, M., Tang, Q., and Leung, L. R. (2015), A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate, J. Adv. Model. Earth Syst., 7, 1285– 1304. https://doi.org/10.1002/2015ms000437
  • Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99( D7), 14415– 14428. https://doi.org/10.1029/94jd00483
  • Mao G, Liu J et al. WAYS v1: a hydrological model for root zone water storage simulation on a global scale. Geoscientific Model Development, 12, 5267-5289, 2019. https://doi.org/10.5194/gmd-12-5267-2019
  • Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann F, Flörke M, Döll P et al. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences, 18, 3511-3538, 2014. https://doi.org/10.5194/hess-18-3511-2014
  • Müller Schmied, H. et al. Evaluation, modification and application of a global hydrological modelFrankfurt Hydrology Paper, 16, ,
  • Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J., and Döll, P et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrology and Earth System Sciences, 20, 2877-2898, 2016. https://doi.org/10.5194/hess-2015-527
  • Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use, Hydrol. Earth Syst. Sci., 20, 2877–2898, 2016. https://doi.org/10.5194/hess-20-2877-2016
  • Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., … Zeng, X. (2010). Technical Description of version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D6FB50WZ
  • Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh P, Kim H, Kanae S, Oki T et al. Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model. J. Hydrometeor, 13, 255-269, 2011. https://doi.org/10.1175/jhm-d-11-013.1
  • Pokhrel Y, Koirala S, Yeh P, Hanasaki N, Longuevergne L, Kanae S, Oki T et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resources Research, 51, 78-96, 2014. https://doi.org/10.1002/2014wr015602
  • Qi, W., Feng, L., Liu, J., Yang, H. et al. Snow as an important natural reservoir for runoff and soil moisture in Northeast China. Journal of Geophysical Research: Atmospheres, None, 2020. https://doi.org/10.1029/2020JD033086
  • Rene Orth and Sonia I Seneviratne, Introduction of a simple-model-based land surface dataset for Europe, 2015 Environ. Res. Lett. 10 044012 https://doi.org/10.1088/1748-9326/10/4/044012
  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research,44,n/a-n/a,2008. https://doi.org/10.1029/2007wr006331
  • Schaphoff S, Heyder U, Ostberg S, Gerten D, Heinke J, Lucht W et al. Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8, 014026, 2013. https://doi.org/10.1088/1748-9326/8/1/014026
  • Schewe, J., Gosling, S.N., Reyer, C. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat Commun 10, 1005 (2019). https://doi.org/10.1038/s41467-019-08745-6
  • Shrestha M, Wang L, Koike T, Xue Y, Hirabayashi Y et al. Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites. Hydrology and Earth System Sciences, 14, 2577-2594, 2010. https://doi.org/10.5194/hess-14-2577-2010
  • Sitch S, Smith B, Prentice I, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes M, Thonicke K, Venevsky S et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185, 2003. https://doi.org/10.1046/j.1365-2486.2003.00569.x
  • Stacke T, Hagemann S et al. Development and evaluation of a global dynamical wetlands extent scheme. Hydrology and Earth System Sciences, 16, 2915-2933, 2012. https://doi.org/10.5194/hess-16-2915-2012
  • Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11, 2429-2453, 2018. https://doi.org/10.5194/gmd-11-2429-2018
  • Takata K, Emori S, Watanabe T et al. Development of the minimal advanced treatments of surface interaction and runoff. Global and Planetary Change, 38, 209-222, 2003. https://doi.org/10.1016/s0921-8181(03)00030-4
  • Tang Q, Oki T, Kanae S, Hu H et al. The Influence of Precipitation Variability and Partial Irrigation within Grid Cells on a Hydrological Simulation. Journal of Hydrometeorology, 8, 499-512, 2007. https://doi.org/10.1175/jhm589.1
  • Tang, Q. Et Al. A Distributed Biosphere Hydrological Model (DBHM) For Large River Basin. Proceedings Of Hydraulic Engineering, 50, 37-42, 2011. https://doi.org/10.2208/prohe.50.37
  • Traore A, Ciais P, Vuichard N, Poulter B, Viovy N, Guimberteau M, Jung M, Myneni R, Fisher J et al. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. Journal of Geophysical Research: Biogeosciences, 119, 1554-1575, 2014. https://doi.org/10.1002/2014jg002638
  • Wang L, Koike T, Yang K, Jackson T, Bindlish R, Yang D et al. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99). Journal of Geophysical Research, 114, 2009. https://doi.org/10.1029/2008jd010800
  • Zhou, T., Nijssen, B., Gao, H., & Lettenmaier, D. P. (2016). The Contribution of Reservoirs to Global Land Surface Water Storage Variations, Journal of Hydrometeorology, 17(1), 309-325. https://doi.org/10.1175/jhm-d-15-0002.1

Additional documentation

Other references

This DOI is a new version of

  • Gosling, Simon; Müller Schmied, Hannes; Betts, Richard; Chang, Jinfeng; Ciais, Philippe; Dankers, Rutger; Döll, Petra; Eisner, Stephanie; Flörke, Martina; Gerten, Dieter; Grillakis, Manolis; Hanasaki, Naota; Hagemann, Stefan; Huang, Maoyi; Huang, Zhongwei; Jerez, Sonia; Kim, Hyungjun; Koutroulis, Aristeidis; Leng, Guoyong; Liu, Xingcai; Masaki, Yoshimitsu; Montavez, Pedro; Morfopoulos, Catherine; Oki, Taikan; Papadimitriou, Lamprini; Pokhrel, Yadu; Portmann, Felix T.; Orth, Rene; Ostberg, Sebastian; Satoh, Yusuke; Seneviratne, Sonia; Sommer, Philipp; Stacke, Tobias; Tang, Qiuhong; Tsanis, Ioannis; Wada, Yoshihide; Zhou, Tian; Büchner, Matthias; Schewe, Jacob; Zhao, Fang (2019): ISIMIP2a Simulation Data from Water (global) Sector (V. 1.1). GFZ Data Services. https://doi.org/10.5880/PIK.2019.003

GCMD Keywords

  • EARTH SCIENCE > AGRICULTURE > AGRICULTURAL PLANT SCIENCE > IRRIGATION
  • EARTH SCIENCE > CLIMATE INDICATORS > TERRESTRIAL HYDROSPHERE INDICATORS > FRESHWATER RUNOFF
  • EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW WATER EQUIVALENT
  • EARTH SCIENCE > HUMAN DIMENSIONS > ECONOMIC RESOURCES > ENERGY PRODUCTION/USE > HYDROELECTRIC ENERGY PRODUCTION/USE
  • EARTH SCIENCE > HUMAN DIMENSIONS > ENVIRONMENTAL GOVERNANCE/MANAGEMENT > ENVIRONMENTAL ASSESSMENTS
  • EARTH SCIENCE > HUMAN DIMENSIONS > ENVIRONMENTAL GOVERNANCE/MANAGEMENT > WATER MANAGEMENT
  • EARTH SCIENCE > HUMAN DIMENSIONS > HABITAT CONVERSION/FRAGMENTATION > IRRIGATION
  • EARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > DROUGHTS
  • EARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > FLOODS
  • EARTH SCIENCE > HUMAN DIMENSIONS > SUSTAINABILITY > ENVIRONMENTAL SUSTAINABILITY
  • EARTH SCIENCE > HUMAN DIMENSIONS > SUSTAINABILITY > SUSTAINABLE DEVELOPMENT
  • EARTH SCIENCE > LAND SURFACE > SOILS > SOIL MOISTURE/WATER CONTENT
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GROUND WATER > GROUND WATER PROCESSES/MEASUREMENTS > DISCHARGE
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW WATER EQUIVALENT
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER FEATURES > RIVERS/STREAMS
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER PROCESSES/MEASUREMENTS > AQUIFER RECHARGE
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER PROCESSES/MEASUREMENTS > FLOODS
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER PROCESSES/MEASUREMENTS > RUNOFF
  • EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER PROCESSES/MEASUREMENTS > TOTAL SURFACE WATER
  • Global Change Master Directory (GCMD) Keywords are a hierarchical set of controlled vocabularies maintained by NASA (more information).

Datasets for this DOI

There are 1560 datasets for this DOI. Here we only display the first 100 datasets. You can use the search interface to further restrict your query: https://data.isimip.org/search/query/10.48364/ISIMIP.882536/